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Often, coping with changing requirements results in sub-
stantial overdesign, because of the ways in which design
margins are allocated at the beginning of the design pro-
cess. In this paper, we present a design optimization method
for minimizing overdesign using additive manufacturing. We
use recently defined constituents of design margins (buffer
and excess) as metrics in a design optimization problem to
minimize overdesign. The method can be used to obtain a set
of design decisions for different changing requirement sce-
narios. We demonstrate our method by means of a turbine
rear structure design problem where changes in the temper-
ature loads are met by depositing different types of stiffeners
on the outer casing. The results of the case study are visual-
ized in a tradespace, which allows for comparison between
sets of optimal, flexible, and robust designs. Results show
that the optimized set of design decisions balances flexibility
and robustness in a cost-effective manner.

1 Introduction
The development of complex engineering systems relies

on the definition and communication of design requirements
from original equipment manufacturers (OEMs) to compo-

∗Address all correspondence to this author.

nent suppliers. While requirements are supposed to be clear
and well-defined, they are subject to changes during the de-
velopment process [1] as a result of iteration and concurrent
engineering among the OEMs and the suppliers.

Manufacturers introduce substantial design margins in
the early phases to cope with changes in requirements. De-
sign margins accommodate changing requirements by pro-
viding a buffer before any change to the product is required.
For example, consider a book shelf designed to sustain 90 N
of load instead of the required 50 N to accommodate future
changes in the operative load [2]. This strategy may result
in overdesign if the 90 N load is never realized, which nega-
tively impacts performance (e.g., through increased weight)
[3, 4].

An alternative approach is to design a component based
on a preliminary requirement (aiming for minimal capabil-
ity) and to modify it when higher requirements arise. In the
previous example, this is the equivalent of designing the shelf
to sustain 50 N, and modify the shelf for a 90 N load require-
ment should it arise. This alternative can be made possible
using additive manufacturing (AM), which enables geometry
modification on existing components through material depo-
sition [5, 6, 7]. However, this strategy has drawbacks. If the
changes in requirements are too many or unforeseen, the cost
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of such modifications could overcome the cost of overdesign-
ing the product.

We show an example of our own that is inspired by the
industry to illustrate these challenges. A turbine rear struc-
ture (TRS) is a static aeroengine structural component that
must sustain temperature loads as a result of the hot engine
exhaust gases. These temperature loads can change during
the design or in-service phases as is shown in Figure 1.

These changes are represented by the red line, hereafter
defined as the requirement arc. The temperature requirement
is assumed to change five times as a result of critical de-
sign reviews [8] and negotiations between the OEM and the
manufacturer of the TRS. These five points are referred to as
epochs, to resonate with tradespace exploration literature [9].

The manufacturer uses AM to cope with this require-
ment change in the above example. In particular, the man-
ufacturer starts working on two different designs, A and B
(hereafter defined as decision arcs). With AM, the geome-
try of the TRS can be initially designed to meet the lower
bound of the temperature range, while depositing a stiffener
on the structure as the temperature requirement changes (first
epoch). However, the decisions made during the design of
the stiffener’s geometry may impact the capability of coping
with changes without resulting in over design.

For instance, choosing the geometry of the deposition as
decision arc A (wavy design concept) will allow for a design
with a capability that fulfills the new requirement at the sec-
ond epoch. However, further changes of this geometry (such
as the one made at epoch 5) do not allow for close tracking of
the requirement arc, resulting in overdesign (blue line). On
the other hand, decision arc B (hatched design concept) al-
lows for better tracking of the requirement arc. This reduces
the risk for overdesign at the end of the process. However,
this comes with the cost and effort of performing more depo-
sitions during the course of the development (4 instead of 2),
outweighing the benefits given by this more flexible decision
arc. There is a a trade-off between the flexibility that can be
enabled by AM deposition and other attributes of the design
(such as weight and manufacturing costs).

We aim at supporting these decisions by presenting a
methodology - based on design optimization and tradespace
exploration that quantifies such tradeoffs. The use of this
method allows for strategic allocation of design margins
into a component when requirement changes occur, to avoid
overdesign.

2 Background
We first review change propagation research to identify

potential sources of requirement changes in engineering sys-
tems. We then review a body of the literature that defines and
quantifies flexibility and changeability of a design. Particular
attention is given to tradespace exploration strategies, which
represent a core building block of the methodology presented
in this paper.

2.1 Change propagation
Requirements are defined during the early stages of a

design project and guide decisions during the early concep-
tual phases of the design process. A client may alter de-
sign requirements resulting in engineering change. Design
structure matrices (DSMs) can be used to model the direct
dependencies between requirements due to an engineering
change. Change prediction method (CPM) extends DSM
approaches to include secondary interactions [10]. Second-
order DSMs can capture second order interactions among re-
quirements [11]. They are the key predictors for the outcome
of engineering change and are often difficult to identify. The
DSM approach is demonstrated by a practical case study of
a contractual firm where engineering changes were initiated
by the client [11, 12]

Multiple domain matrices (MDMs) asses change prop-
agation in complex product systems. A product is broken
down into individual components. Domain mapping matri-
ces (DMMs) are combined with DSMs to propagate changes
between different domains (requirements, change options,
and components). Performance ratings are assigned to each
change option to initiate the MDM analysis using expert
knowledge. The components of the MDM are computed
and used to update the initial performance ratings iteratively.
This CPM helps designers identify those options closely as-
sociated with the anticipated requirement change [13].

We present an approach that can be useful for providing
insight on how to select initial performance indicators for a
CPM. The second-order DSM approach can be used to iden-
tify the most important requirements likely to effect an en-
gineering change and reduce the set of possible requirement
changes [11]. We assume a given set of possible require-
ment changes and use it to compute the performance ratings
needed to initialize a CPM. We consider the allocation of de-
sign margins as change options in this paper.

2.2 Design margins
Design margins can be considered as a portion of a prod-

uct’s capability. Capability is defined as the set of possible
values for a design parameter for which feasibility is main-
tained [2]. Quantifying design margins involves measuring
the constituents of margins: buffer and excess. Buffer is
defined as the portion of a design’s capability reserved for
meeting variations in a requirement. Excess is the portion
of a design’s capability beyond the limits within which a re-
quirement may vary [14]. Design margins are incorporated
into product design by augmenting the capability of a prod-
uct to include parameter values beyond the initial ones that
were intended to satisfy the requirements resulting in more
excess. This can be referred to as overdesign [2]. Design
margins can be managed by quantifying them explicitly to
assess the cost and risk of moving to a new design solution
later in a product’s lifecycle or development process.

Tackett et al. calculate excess as the range of chang-
ing parameters that the product satisfies [14]. Cansler et al.
use component specifications and functional flow informa-
tion to quantify the excess at the interfaces between compo-
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Fig. 1: Example of a product development process showcasing different decision arcs

nents [15]. Other studies define application specific capa-
bility and capacity measures [16, 17] such as the available
excess for transport and storage on a ship [16]. Cross and
Mulford and Villanueva et al. specify requirements in the
form of probability density functions that must be met by
satisfying so-called reliability levels [18, 19]. Villanueva et
al attempt to optimize design margins subject to the reliabil-
ity constraints.

This paper focuses on the interdependencies between
changing requirements. There is a need for an approach that
considers the effect of interactions between several chang-
ing requirements [2]. Furthermore, this paper focuses on the
inherent uncertainty of such changing requirements. We re-
view existing methods and metrics to quantify changeabil-
ity, flexibility, and robustness to address the uncertainty sur-
rounding requirement change.

2.3 Quantifying design changeability and flexibility
Design changeability is defined as the ability of a system

to undergo specified changes with relative ease and efficiency
[20, 21].

In design for changeability literature [22], flexibility
and robustness are distinct means to include changeability
in a design. Design flexibility is the ability of a design to
be altered with relative ease and low cost to accommodate
changes in customer requirements and operating environ-
ments [23, 24]. Robustness characterizes a product’s ability
to be insensitive towards changing operational environments
without the need for change or modification.

There is a need for readily changeable designs that cope
with changing requirements in the uncertain yet competitive
market conditions that characterize the aerospace business

today.

Several studies utilize tradespace exploration strategies
to quantify flexibility of a design [16, 9, 25, 26]. The main
utility of tradespace exploration lies in its ability to visual-
ize and categorize designs into sets of solutions. Viscito and
Ross use Pareto optimality to extract flexible cost-efficient
designs from the tradespace and plot a reduced tradespace
to further analyze this reduced set [25]. One metric that is
extracted from the tradespace is the filtered outdegree de-
fined as the number of possible feasible changes that emanate
from a particular design in the tradespace network [16, 25].
Changing requirements are represented as discrete time pe-
riods, called epochs during which the context, needs and re-
quirements are stable [9]. Requirements and needs change
when moving from one epoch to the next. A chain of design
changes, referred to as an arc, is used to address the changing
requirements [16, 25, 22, 20]. Arcs that maximize flexibility
in the offered solutions are obtained using a stochastic pro-
gramming problem to minimize a cost function [17].

Tradespace exploration has been successfully used in a
number of studies although it has not yet been used to study
the effect of design margin allocation on the flexibility of a
design [26]. We define design margin components reviewed
in Section 2.2 such as buffer and excess to be used as part of
the multi-attribute function governing a tradespace. The use
of buffer and excess as metrics for tradespace exploration
studies represent the main elements of novelty of the method
presented in this paper, and are introduced in the next section.
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3 Proposed method
The study of design excess is relatively nascent. A

method to strategically select design margins is required.
The successful implementation of such a method requires
a metric for quantifying design excess while providing a
means to manage the change in requirements likely to be
encountered throughout a product’s lifetime or development
process. Finally, the value of excess must be estimated and
traded against during system design [3].

The reviewed literature does not report a method to
quantify design margins (or its constituents: buffer and ex-
cess) in a multi-dimensional space by means other than in-
tervals. The tradeoff between design robustness and flexibil-
ity has not been investigated within a tradespace exploration
framework despite the abundance of studies on quantifying
these aspects. Little work has been done to examine the evo-
lutionary path of products in response to changes in their
environment or requirements hence the need for an epoch-
based analysis that explores product changes in a progressive
manner as requirements change [3, 17].

We propose a method where we compute design relia-
bility, capability, buffer, and excess in a multi-dimensional
parameter space. We adopt the terminology of Ross et al.
pertaining to arcs [22]. Each node along a decision or re-
quirement arc represents a design alternative or requirement,
respectively. We use Monte Carlo simulation to chain mul-
tiple requirements probability density functions (PDFs) to-
gether to generate a requirement arc across multiple epochs.
This formulation of the requirements captures the progres-
sive nature of a product’s development process and lifetime;
we refer to them as the product cycle in the remainder of the
paper. A corresponding decision arc is found by optimization
such that excess is minimized while reliability is maintained
above a threshold. The decision arc can be traced to obtain
a design alternative. In this manner, Monte Carlo simula-
tion is used to generate multiple requirement arcs to obtain
a set of solutions that balances robustness with flexibility by
minimizing excess.

Our approach differs from the one in [17] in that we
obtain set-based solutions by minimizing a cost function in
terms of excess. Furthermore, categorical design variables
are considered during the progressive upgrade of the design.

3.1 Relevant design metrics
The parameter vector p = [p1, p2, · · · , pn]

T ∈Rn, con-
sists of n parameters that may change [2]. In context of the
bookshelf example, a design parameter would be the weight
of the books. The feasibility criteria are formulated as con-
straints that the design must satisfy t−g f (p)≤ 0, where t is
a vector of threshold values that the constraint function g f (p)
must exceed. For example, the safety factor of the book shelf
for a given book must be greater than 2. Unlike requirements,
feasibility constraints are fixed throughout the product cycle.
Capability is defined as the set of possible values of a design
parameter for which feasibility is maintained [2] (The set of

books for which the safety factor is greater than 2):

C =
{

p ∈ Rn | t−g f (p)≤ 0
}
. (1)

We represent requirements using a joint probability den-
sity function (PDF) FX (p) [19, 27, 28, 29]. For example, the
book shelf must support all books between 10 and 20 kg
with a safety factor of at least 2. In practice such probabil-
ity distributions can be constructed from previous knowledge
regarding the uncertain parameters. For example, a sam-
ple of books can be weighed and their mean weight, lower,
and upper bounds can be recorded to formulate a require-
ment. Knowing the capability of a design and the corre-
sponding requirement joint PDF we can calculate reliability
in terms of the probability that the design satisfies the re-
quirement [30, 31]:

P(p ∈C) =

∫
C∩R

FX(p)dp∫
R

FX(p)dp
. (2)

R in the denominator is the requirement set defined by the set
of parameter values that yield significant probability density
values from the joint PDF used.

The requirement set R for a uniform PDF is given by

FX(p) =


1

n
∏
j=1

∣∣b j−a j
∣∣ for a≤ p≤ b,

0 for p < a or p > b

, (3)

where a and b are the lower and upper bound vectors respec-
tively. The requirement set R comprises the values of p that
lie within the bounds a and b:

R = {p ∈ Rn | a≤ p≤ b} . (4)

The Gaussian joint PDF is given by

FX(p) =
exp
(
− 1

2 (p−µ)TΣ−1(p−µ)
)√

(2π)n|Σ|
, (5)

where µ is the mean vector and Σ is the covariance matrix. In
this paper, we assume that parameters are uncorrelated. This
results in a diagonal covariance matrix given by Σ= diag(σ),
where σ is the standard deviation vector. In the denominator
of Equation (5), |Σ| ≡ detΣ≡

n
∏
j=1

σ j. The requirement set R

is defined as the values of p that result in a probability den-
sity level greater than that at the 3σ isocontour of a Gaussian
FX(p).

R =
{

p ∈ Rn | FX(p)≥ FX(µ+[3σ1 0 · · · 0]T)
}
. (6)
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This is because the probability that a random parameter value
sampled from a Gaussian PDF lies outside the 3σ isocon-
tour is small (< 0.3%). Note that FX(µ+ [3σ1 0 · · · 0]T) ≡
FX(µ+ [0 3σ2 · · · 0]T) ≡ FX(µ+ [0 0 · · · 3σn]

T) since they
all lie on the 3σ isocontour.

We use Monte Carlo integration to approximate the inte-
grals in Equation (2). Monte Carlo integration based on Latin
hypercube (LH) sampling has the advantage of scaling well
with dimensionality of the problem [32, 33], while impor-
tance sampling can be used in the case of a Gaussian PDF to
enhance the accuracy of the approximation [28, 30, 34]. The
Monte Carlo approximation is given by

P(p ∈C)≈

|C∩R|
∑

i=1
FX(pi)

|R|
∑

i=1
FX(pi)

. (7)

We use a two-dimensional parameter space shown in
Figure 2 to illustrate the calculation of the reliability rep-
resented by P(p ∈ C). Only the Monte Carlo samples that
lie within the set C (black dots) are evaluated by FX(p) and
summed to compute the numerator of Equation (7). All the
Monte Carlo samples shown in Figure 2 (black and red dots)
are evaluated by FX(p) and summed to compute the denom-
inator of Equation (7).

Buffer is defined in the parameter space as the portion
of the capability of a design reserved for changes in require-
ments [2]. In other words, the buffer set is defined as the
intersection of sets C and R

B = {p ∈ Rn | p ∈ (C∩R)} . (8)

The region given by intersection of the compliment of
capability C′ and the requirement set R is the opposite of
buffer and endangers the design’s ability to meet the require-
ments. This danger zone is defined as follows

D =
{

p ∈ Rn | p ∈
(
C′∩R

)}
. (9)

Excess is defined as the portion of the parameter space
reserved for possible future changes in the requirements [2].
This is reflected by the set of parameter values that lie within
the capability set C but not within the requirement set R.

E =
{

p ∈ Rn | p ∈
(
C∩R′

)}
. (10)

Note that B∪E =C.
We are particularly interested in minimizing excess dur-

ing the product redesign cycle. We estimate excess using the
volume of the set E

VE ≈
1
N

N

∑
i=1

H (pi), where H (pi) =

{
1 if pi ∈ E
0 otherwise

, (11)

where N is the number of samples from the parameter space
used for the integration. We can use the reliability calcu-
lation and the volume of the requirement set R to estimate
the volume of the set E indirectly. The volume of R can be
computed analytically for a uniform or Gaussian distribution
using the corresponding hyper-rectangle or hyper-ellipsoid,
respectively:

VR =


n
∏
j=1

∣∣b j−a j
∣∣ if FX(p) is uniform

π2

32

n
∏
j=1

∣∣b j−a j
∣∣ if FX(p) is Gaussian

. (12)

We can then estimate the volume of set C similarly:

VC ≈
1
N

N

∑
i=1

H (pi), where H (pi) =

{
1 if pi ∈C
0 otherwise

. (13)

The reliability approximates the percentage of R in C
and can be used as as proxy for the volume of C∩R such
that VC∩R ≈ P(p ∈ C)×VR. VE can now be approximated
using

VE ≈VC−P(p ∈C)×VR. (14)

The sets C,R,B,D, and E are shown in Figure 2 for a
uniform and Gaussian requirement PDF. Having defined all
the required design metrics, we can formulate an optimiza-
tion problem to minimize excess subject to reliability con-
straints. We first set the context of the optimization problem
in terms of an epoch-era analysis [22] to simulate changing
requirements throughout the product cycle.

3.2 Epoch-era analysis for product redesign
We consider the redesign of component as time pro-

gresses through its development and lifecycle. At every
epoch in the product cycle, the designer must make redesign
decisions. The set of redesign choices is defined as the set
of non-negative integers D = {0,1,2, · · · ,q}. Chaining mul-
tiple choices together results in a design alternative defined
as

D = [D1, D2, · · · , Do] (15)

with possible choices Dd ∈ Do, where 1 ≤ o ≤ q+ 1. The
maximum number of redesign choices q+1 dictates the max-
imum number of possible design alternative combinations
where no choice is repeated twice. For example, consider
a case where there are q+ 1 = 3 redesign choices given by
D = {0,1,2}. If o = 1 then we have three possible design
alternatives: D = [0], D = [1], and D = [2]. For o = 2, 6 addi-
tional design alternatives can be obtained by permuting any
2 choices from D . Similarly, another 6 design alternatives
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Fig. 2: Buffer and excess relative to a feasibility constraint g f 1(p) in the two-dimensional parameter space for uniform (left)
and Gaussian (right) PDFs

can be obtained for o = 3 by permutating all three choices in
set D . A total of 15 design alternatives can be obtained from
D = {0,1,2}.

These enumerations comprise a set of possible design al-
ternatives given by ΩD. The cardinality of ΩD for a different
number of redesign choices q+1 is given by

ΩD =
q+1

∑
o=1

q+1Po, (16)

where q+1Po is the number of ways for obtaining an ordered
subset of o elements from a set of q+1 elements.

We define a product cycle with m number of epochs and
m number of corresponding decisions S ∈ S m, where Sk is
the decision at epoch k and S is the set of possible decisions.
In this paper, we consider discrete redesign choices only. A
non-negative integer value from the set S implies a redesign
choice. A value of −1 implies no redesign is performed at
the current epoch. This means that S = {−1,0,1,2, · · · ,q},
where q+1 is the number of available redesign choices.

The vector of all the decisions taken throughout the
product cycle is referred to as the decision arc and is defined
as

S = [S1, S2, · · · , Sm] . (17)

The decision arc S has as many components as there are
epochs. This is because a fixed number of decisions are made
regarding redesign (including the choice to not redesign the
TRS).

The set of possible decision arcs that can be gen-
erated from the set of possible decisions S may be re-
stricted by constraints. A feasible decision arc cannot con-
tain repeated choices. For example, the decision arc S =
[0, −1, 0, −1, 1, 3] is infeasible since the choice 0 was

repeated twice. This constraint is specific to the applica-
tion example in this paper because of the AM process used
to effect the change. A design change cannot be retracted
but choosing not to redesign the TRS (Sn =−1, Sn+1 =−1)
multiple times is viable. Furthermore, the first decision can-
not be empty, i.e. S1 6= −1. This is because a decision arc
must begin with some sort of design. These restrictions make
computing the cardinality of the set of possible decision arcs
ΩS challenging. However, the cardinality of ΩS is given by a
finite positive integer similar to ΩD in Equation (16).

A corresponding design alternative can be extracted
from the decision arc by removing all negative elements from
S to obtain D = [0, 2, 1, 3].

For each epoch k, a design alternative can be extracted
by excluding values from S that are equal to −1. The vec-
tor Dk = [D1, D2, · · · , Do] represents this design alterna-
tive at epoch k where the elements of D are non-negative
integers and o is the number of non-negative integers in
Sk = [S1, S2, · · · , Sk] up to the current epoch k. E.g., for
a problem with m = 6 epochs and the decision arc

S = [0, −1, 2, −1, 1, 3] ,

the following m = 6 design alternatives can be extracted

epoch k = 1 : D1 = [0]
epoch k = 2 : D2 = [0]
epoch k = 3 : D3 = [0, 2]
epoch k = 4 : D4 = [0, 2]
epoch k = 5 : D5 = [0, 2, 1]
epoch k = 6 : D6 = [0, 2, 1, 3] .

It follows that a design alternative cannot feature repeated
elements due to the uniqueness of the positive decision arc
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elements. Each design alternative has a unique capability set
Ck.

We now define the requirement arc as a vector of joint
PDFs that has m elements, where each element corresponds
to a different epoch k with a requirement joint PDF FXk(p):

R = [FX1(p), FX2(p), · · · , FXm(p)] . (18)

The reliability at epoch k (quantified by Pk(p ∈Ck)) can
be calculated from Ck (derived from Dk) and the requirement
joint PDF FXk(p):

P(p ∈ C) = [P1(p ∈C1), P2(p ∈C2), · · · , Pm(p ∈Cm)] ,
(19)

where C is the vector of capability sets C =
[C1, C2, · · · , Cm].

At each epoch, a reliability threshold Pk is defined to
yield a vector of reliability thresholds defined as

Pth = [P1, P2, · · · , Pm] . (20)

The volume of the excess set VEk at epoch k can be cal-
culated from Ck and the requirement joint PDF FXk(p) using
Equations (10) and (14). The cumulative excess for a given
decision arc can be formulated as

Ec =
m

∑
k=1

VEk. (21)

In addition to the decision arc S, a fixed design con-
cept ct ∈ C is defined. The concept type ct is selected at
the very beginning of the epoch-era analysis and does not
change throughout epochs. The choice of ct dictates the list
of redesign choices available for the remainder of the product
cycle. C is the set of concept choices whose elements are all
non-negative integers. This means that C = {0,1,2, · · · ,r},
where r+1 is the number of available concept choices.

Each concept type Ct has a set of redesign options Dt
with q+1 redesign choices attached to it. Accordingly, each
concept type ct will have a set of possible design alternatives
ΩDt and a set of possible decision arcs ΩSt . The combination
of a concept and design alternative {c,D} will be referred to
as a design alternative in this paper for conciseness. Simi-
larly, the combination of a concept and a decision arc {c,S}
will be referred to as a decision arc.

The cardinality of the set of possible design alternatives
ΩcD can be obtained by summing up the cardinalities of all
sets ΩDt for a given set of concept choices C :

β = |ΩcD|=
r

∑
t=0
|ΩDt |, (22)

where |ΩDt | can be obtained from Equation (16) given the
number of redesign choices q+ 1 for each concept. The set

of possible design alternatives represents the feasible design
space, defined as

ΩcD =
{
{c,D}1 ,{c,D}2 , · · · ,{c,D}β

}
. (23)

We now formulate an optimization problem for choos-
ing the optimal concept c and decision arc S such that cu-
mulative excess Ec is minimized subject to reliability con-
straints:

minimize
{c,S}∈ΩcS

f (c,S;R) = Ec =
m

∑
k=1

VEk(c,Dk;FXk(p))

subject to g(c,S;R) = Pth−P(p ∈ C)≤ 0,
(24)

where ΩcS denotes the set of all feasible decision arcs.
The problem in Equation (24) is solved using the mixed

variable optimization variant of the mesh adaptive direct
search (MADS) algorithm provided by the NOMAD software
package [35]. This implementation of MADS allow users to
specify categorical constraints via an extended poll subrou-
tine and is called during the search step [36, 37].

The solutions of the problem given by Equation (24) de-
pends on the requirement arc. Requirements are subject to
change; therefore, we adopt a set-based design strategy to
address such requirement changes.

3.3 Set-based design to mitigate changing requirements
Our set-based design strategy involves sampling require-

ment arcs R from the set of possible requirement arcs ΩR =
{R1,R2 · · · ,Rs} with s = |ΩR|. A sample Rw involves pop-
ulating the requirement arc with joint PDFs at each epoch k
by selecting a joint PDF from the set of possible joint PDFs
R = {FX1(p),FX2(p), · · · ,FXv(p)}, where v is the number of
joint PDF choices.

Populating the set R is based on the designer’s experi-
ence and previous knowledge in requirements. E.g., if re-
quirements are expected to become well-defined over time
around a certain value in the parameter space, then a matrix
of mean vectors M = [µ1,µ2, · · · ,µe]

T and a matrix of stan-
dard deviation vectors Σ = [σ1,σ2, · · · ,σe]

T can be obtained
by using e interpolation levels between the initial and final
states for each type of joint PDF given by the set T .

The set of possible requirement arcs ΩR spans every pos-
sible combination of the joint PDFs (their type, mean, and
standard deviation) and has a cardinality given by

v = e× e×|T | and
s = |ΩR|= mv, respectively.

The first set-based solution is obtained by solving the
optimization problem in Equation (24) for every requirement
arc sample Rw. The corresponding optimal design alterna-
tive D∗ can be extracted from the optimal decision arc S∗ to
obtain the solution x∗(Rw) = {c∗,D∗}(Rw). This is done in
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order to compare the overdesign levels across different de-
sign alternatives rather than different decision arcs.

The set of parametric optimal design alternatives with
respect to excess is defined as

S∗E = {x∗(R1),x∗(R2) · · · ,x∗(Rs)} . (25)

We track the number of times a specific design alterna-
tive {c,D}λ appears as the solution to the parametric opti-
mization problem in S∗E via a design optimality vector de-
fined as

NE =
[
nE1, nE2, · · · , nEβ

]
, (26)

where nEλ is equal to the number of times design alternative
{c,D}λ ∈ ΩcD is repeated in S∗E . The top α design alterna-
tives with the largest nEλ values are selected as the set-based
solution representing the best performing design alternatives
in terms of minimizing overdesign:

SE = {{c,D}E1 ,{c,D}E2 · · · ,{c,D}Eα} . (27)

The rationale for selecting α will be described in the context
of the application example presented in this paper.

The pseudo-algorithm in Algorithm 1 summarizes the
above described method for obtaining the sets of optimal de-
sign alternatives with respect to excess.

The second set-based solution is the robust design set.
We define robustness of a design alternative by the number of
design alternatives satisfied from the set ΩR. We evaluate the
feasibility of each design alternative {c,D}λ sampled from
the set of possible design alternatives in Equation (23) with
respect to every requirement arc Rw in ΩR.

We generate all the possible decision arcs for a given
design alternative {c,D}λ by randomly inserting the −1 de-
cisions into the design alternative vector until it has the
same number of elements as the number of epochs m. We
show this using an example. Consider the design alternative
{c = 1,D = [2, 0, 1]}. The possible decision arcs are

{c = 1,S = [2, −1, −1, −1, 0, 1]}
{c = 1,S = [2, −1, −1, 0, −1, 1]}
{c = 1,S = [2, −1, −1, 0, 1, −1]}
{c = 1,S = [2, −1, 0, −1, 1, −1]}
{c = 1,S = [2, −1, 0, 1, −1, −1]}
{c = 1,S = [2, 0, −1, 1, −1, −1]}
{c = 1,S = [2, 0, 1, −1, −1, −1]} ,

yielding the set of decision arcs with ζ = 7 elements

ScD = {{c,S}1 ,{c,S}2 · · · ,{c,S}7} . (28)

Feasibility in terms of reliability is checked for every
possible decision arc {c,S}γ for a given {c,D}λ and require-
ment arc Rw using g(cγ,Sγ;Rw) = Pth−P(p ∈ C) ≤ 0. If
any of the decision arcs in set ScD satisfy all the reliability
constraints then the corresponding design alternative {c,D}λ
is considered feasible. We track the number of requirement
arcs satisfied by design alternative {c,D}λ through a robust-
ness vector defined as

NR =
[
nR1, nR2, · · · , nRβ

]
, (29)

where nRλ is equal to the number of requirement arcs Rw ∈
ΩR satisfied by design alternative {c,D}λ ∈ ΩcD. The top α
design alternatives with the largest nRλ values are considered
as the robust design set:

SR = {{c,D}R1 ,{c,D}R2 · · · ,{c,D}Rα} . (30)

The final set-based solution is the flexible design set. All
possible design alternatives in set ΩcD are ranked in terms of
filtered outdegree, defined as the number of possible design
alternatives that can be obtained from the current design al-
ternative by adding exactly one redesign choice that is not an
element of the current design alternative. The filtered part is
determined by which design changes are allowed when going
from one design “state” to another. For example, the possi-
ble designs that can be obtained from D= [0,1] are [0,1,2] or
[0,1,3] (the outdegree) if only three deposits are considered.
In this way other designs such as [2,1,0], [1,0,2], · · · etc. are
filtered out when considering the flexibility of design alterna-
tive D = [0,1]. The filtered outdegree for a design alternative
{c,D}λ having o elements and q+1 redesign choices is equal
to

OFλ = q−o. (31)

The top α design alternatives in terms of filtered outde-
gree are considered as the flexible design set:

SF = {{c,D}F1 ,{c,D}F2 · · · ,{c,D}Fα} . (32)

The pseudo-algorithm in Algorithm 2 summarizes the
above described method for obtaining the sets of robust and
flexible design alternatives.

We will now use a tradespace to visualize and compare
these solution sets.

3.4 Tradespace exploration for comparing solution sets
A tradespace can be constructed by plotting the volume

of the capability set Vc, against the weight of each design al-
ternative. The volume of capability set is chosen as the utility
since it is independent of the requirement joint PDF. This al-
lows for a fair comparison between different design alterna-
tives. The design alternatives in sets SE ,SR, and SF are also
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Algorithm 1: Pseudo-algorithm for obtaining the set of optimal design alternatives SE

Input: Set of possible requirement arcs ΩR, Set of possible design alternatives ΩcD
Output: SE

1 Initialize design optimality vector NE =
[
nE1,nE2, · · · ,nEβ

]
= 0

2 for w = 1,2, ...,s do
3 Solve the parametric optimization problem in Equation (24) to obtain optimal decision arc

x∗S(Rw) = {c∗,S∗}(Rw)
4 Reduce optimal decision arc to optimal design alternative by eliminating −1 components of S∗ to obtain

x∗(Rw) = {c∗,D∗}(Rw)
5 Augment S∗E ← S∗E ∪{x∗(Rw)}
6 Find λ corresponding to {c∗,D∗}
7 Award design alternative nEλ← nEλ +1

8 Sort design optimality vector NE in descending order
9 Select top α design alternatives with largest values nEλ to obtain set of optimal designs

SE = {{c,D}E1 ,{c,D}E2 · · · ,{c,D}Eα}

Algorithm 2: Pseudo-algorithm for obtaining the sets of robust SR and flexible SF design alternatives
Input: Set of possible requirement arcs ΩR, Set of possible design alternatives ΩcD
Output: SR, SF

1 Initialize design robustness vector NR =
[
nR1,nR2, · · · ,nRβ

]
= 0

2 for λ = 1,2, ...,β do
3 Enumerate possible decision arcs from {c,D}λ to obtain the set ScD =

{
{c,S}1 ,{c,S}2 · · · ,{c,S}ζ

}
4 for w = 1,2, ...,s do
5 for γ = 1,2, ...,ζ do
6 if g(cγ,Sγ;Rw)≤ 0 then
7 Award design alternative nRλ← nRλ +1
8 break

9 Compute filtered outdegree for {c,D}λ using OFλ = q−o
10 Augment design flexibility vector NF ← NF ∪{OFλ}
11 Sort design robustness vector NR in descending order
12 Select top α design alternatives with largest values nRλ to obtain set of robust design alternatives

SR = {{c,D}R1 ,{c,D}R2 · · · ,{c,D}Rα}
13 Sort design flexibility vector NF in descending order
14 Select top α design alternatives with largest values OFλ to obtain set of flexible design alternatives

SF = {{c,D}F1 ,{c,D}F2 · · · ,{c,D}Fα}

projected on the same tradespace to compare their relative
position and size. The Pareto front for such a tradespace can
be approximated by solving the bi-objective problem

minimize
{c,D}∈ΩcD

[−Vc(c,D) W (c,D)] (33)

The positioning of sets SE ,SR, and SF relative to the
Pareto set obtained by solving the problem in Equation (33)
provides a measure for the dominance of each design set.

4 Application
We demonstrate the importance of minimizing excess

in aerospace structural component design by applying our
method to the design of a turbine rear structure (TRS). The

TRS is a structural component located after a jet engine’s tur-
bines to direct exhaust gases. The TRS shown in Figure 3a is
subject to thermal loads due to temperature gradients expe-
rienced during operation. The temperature profile of a TRS
during operation is shown in Figure 3b. These temperature
loads are specified by the OEM engine architect to the TRS
component supplier in the form of changing parameters. The
TRS is remanufactured using AM to increase the stiffness of
the outer casing in response to changing requirements (tem-
perature loads). The TRS can undergo multiple redesigns as
given by a decision arc during its product cycle. We will now
describe the available stiffener designs.

4.1 Stiffener deposition on TRS outer casing
Stiffeners deposited on the outer casing of the TRS in-

volve the application of heat to the outer casing (the sub-
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(a) A TRS drawing example
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(b) Thermal loads

Fig. 3: TRS remanufacturing example

strate) to deposit material on its surface. This causes residual
distortion that persists after the removal of the heat source
and affects the structural performance when loads are applied
during operation. The residual stresses experienced by the
TRS due to the deposition of a stiffener are quantified using
previous results and analyses [38].

There are several stiffener geometries available to the
designer of the TRS given by the set of possible design al-
ternatives ΩcD. We draw inspiration from commonly used
standard stiffener designs to generate concepts and design
choices [39]. The design space consists of three possible de-
position concepts C = {0,1,2}. We illustrate these concepts
and their respective design choices in Figure 4.

We compute the cardinality of the set ΩcD using Equa-
tion (16), Equation (22) and the maximum of number of re-
design choices obtained from Figure 4. Calculation of the
cardinality is given by the following:

concept c0 : |ΩD0|= 15
concept c1 : |ΩD1|= 325
concept c2 : |ΩD2|= 64
β = |ΩcD|= 15+325+64 = 404.

We now describe the analysis steps for obtaining the ca-
pability of a given stiffener design alternative as a function
of the thermal temperature loads.

4.2 Loadcase description
The changing temperature loads in Fig-

ure 3b are used to specify the vector of chang-
ing parameters p = [T1, T2, T3, T4]

T. We con-
strain our study to a parameter space defined by
p ∈ {p : pnominal−pdeviation ≤ p≤ pnominal +pdeviation},
where pnominal = [350, 425, 410, 580]T and pdeviation =

[100, 100, 100, 100]T.

c=0; wavy c=1; hatched c=2; tubular

D=0

D=1

D=2

D=3

D=4

Fig. 4: Illustration of possible concepts and redesign choices
for TRS stiffener

The thermal load case is cycled and is used to com-
pute the expected fatigue life of the TRS using low-cycle fa-
tigue calculations that were described in previous work [38].
The result of the the low-cycle fatigure analysis is a safety
factor (nsafety) against low-cycle fatigue failure or yielding,
whichever occurs first. The TRS design is constrained by a
minimum safety factor equal to 2.8.
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The structural analysis is performed using a finite ele-
ment (FE) simulation model which is computationally ex-
pensive. As a result, for every design alternative in ΩcD, we
build a surrogate model for computing nsafety(p). The surro-
gate is built using data obtained from the simulation model
for 25 Latin hypercube samples of the parameter space for
every design in ΩcD. This resulted in 25×404 = 10100 sam-
ples for the surrogate. For this particular problem, the sam-
pling was sufficient to capture the effect of increasing the in-
ternal temperature loads (T2,T3, and T4) on decreasing nsafety
due to the expansion of the outercasing of the TRS. We use
an open source surrogate model library to build and optimize
the hyperparameters of an ensemble of surrogates [40].

Mathematically, we formulate the constraint on the
safety factor as

t1− ĝ f 1(p)≤ 0. (34)

We visualize this constraint in the 4-dimensional parameter
space for a few example design alternatives in Section 5.1.

4.3 Loadcase requirements

Having defined the 4-dimensional parameter space, we
now define the joint PDFs and the corresponding require-
ment arcs that can be constructed from them. While we con-
sider only two types (T = {uniform,Gaussian}), any distri-
bution can be used in our method.

All design metrics and requirements are scaled between
0 and 1. This helps when making comparisons between dif-
ferent design alternatives in terms of hypervolume of sets
with 0 being the minimum possible hypervolume and 1 being
the maximum possible hypervolume.

We use e = 5 interpolation levels to obtain
M and Σ. The initial mean and standard devi-
ation vectors are µ1 = [0.15, 0.80, 0.80, 0.85]T

and σ1 = [0.1875, 0.125, 0.125, 0.1875]T, re-
spectively. The final mean and standard devia-
tion vectors are µ5 = [0.85, 0.20, 0.20, 0.15]T and
σ5 = [0.375, 0.250, 0.250, 0.375]T, respectively. As
a result, the matrix of interpolated mean and standard
deviation vectors is

M =



µT
1

µT
2

µT
3

µT
4

µT
5

=



0.15 0.80 0.80 0.85

0.325 0.65 0.65 0.675

0.5 0.5 0.5 0.5

0.675 0.35 0.35 0.325

0.85 0.20 0.20 0.15



and

Σ =



σT
1

σT
2

σT
3

σT
4

σT
5

=



0.1875 0.125 0.125 0.1875

0.234375 0.15625 0.15625 0.234375

0.28125 0.1875 0.1875 0.28125

0.328125 0.21875 0.21875 0.328125

0.375 0.250 0.250 0.375

 ,

respectively.
We consider a remanufacturing design problem with

m = 6 epochs. The number of choices v for R =
{FX1(p),FX2(p), · · · ,FXv(p)} and the cardinality s for ΩR are

v = e× e×|T |= 5×5×2 = 50 and

s = |ΩR|= mv = 650, respectively.

Only the first few elements of ΩR will be used during the
set-based design analysis and s will be capped at 105 sam-
ples. This is because the set-based solutions stabilize and do
not change after sampling 4×104 requirement arc samples.

While we chose the following reliability threshold vec-
tor for this example

Pth = [0.01, 0.1, 0.3, 0.3, 0.8, 0.9]T ,

a design engineer can test and react to different lifecycle sce-
narios by adjusting the reliability threshold. In this appli-
cation, the reliability is ramped up further down the design
process to allow room for flexibility in the early conceptual
stage but adds more restrictions on reliability as the project
approaches completion. By contrast, the reliability threshold
would be held constant as per industry standards to ensure
safe operation when considering a design that is in operation.

5 Results and discussion
We initiate the solution of the remanufacturing design

problem by obtaining the capability set for every design al-
ternative in the set ΩcD. We begin by investigating a few
selected design alternatives from ΩcD. We then solve a sin-
gle optimization problem to minimize excess for a given re-
quirement arc from the set ΩR. We then present the set-based
results for the problem using a tradespace.

5.1 Example for calculating the design properties of a
given design alternative

We use two design alternatives from the set ΩcD to
visualize feasible space, capability and reliability in two-
dimensional projections of the four-dimensional parameter
space in Figure 5.

We can observe that the addition of one more deposit
to the design alternative {c = 1,D = [1,2,4]} increases its
performance in terms of capability and reliability (given
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by the larger capability set C and its intersection with
the requirement set R). By comparing Figures 5a
({c = 1,D = [1,2,4]}) and 5b ({c = 1,D = [1,2,4,0]}), it
can be seen that the size of C ∩ R (given by the square
hatched area) which represents reliability is larger for
{c = 1,D = [1,2,4,0]}. However, this comes at the cost of
an additional 4.6 kg of weight and reduced filtered outde-
gree. Figure 5b shows that {c = 1,D = [1,2,4,0]} has an
additional excess (given by the unhatched area) of 0.327 for
a uniform PDF when compared to {c = 1,D = [1,2,4]}. Fig-
ure 5 shows the tradeoff between reliability and excess by ex-
amining their areas for two design alternatives. The choice
of design alternative for a given requirement arc is driven by
the need to maintain reliability while minimizing excess. We
will apply epoch-era analysis and numerical optimization to
solve related design decision problems.

5.2 Optimization with respect to a requirement arc
We solve the problem given by Equation (24) using a

mixed variable programming version of MADS [35]. The
requirement arc Rw used for this problem is given in Table 1.

Table 1: Requirement arc Rw

PDF Index
(FX ∈ R )

FX36 FX50 FX1 FX46 FX13 FX31

mean
vector (µ)


0.5
0.5
0.5
0.5




0.85
0.2
0.2

0.15




0.15
0.8
0.8

0.85




0.85
0.2
0.2

0.15




0.5
0.5
0.5
0.5




0.325
0.65
0.65

0.675


SD∗ vector

(σ)


0.1875
0.125
0.125

0.1875




0.375
0.25
0.25
0.375




0.1875
0.125
0.125
0.375




0.1875
0.125
0.125
0.1875




0.28125
0.1875
0.1875

0.28125




0.1875
0.125
0.125

0.1875


type (t) Gaussian Gaussian uniform Gaussian uniform “Gaussian”

*SD: standard deviation

We plot the results from various decision arcs
across epochs in Figure 6. The first decision arc,
{c = 1,S = [2,1,−1,−1,0,−1]} (shown in red) does not
satisfy the reliability constraint as shown in Figure 6a. This
is because at epoch k = 3 the reliability of the correspond-
ing design alternative {c = 1,D = [2,1]} is almost 0. No
redesign occurred at epoch k = 3 when it was needed to
increase the reliability of the design alternative above the
threshold.

We investigate another decision arc
{c = 1,S = [4,1,0,2,−1,3]} (shown in green) that achieves
very high reliability throughout all epochs. However, this
comes at the cost of increased cumulative excess (green
shaded area in Figure 6b) relative to that of the first decision
arc (red shaded area).

We solve the optimization problem given
by Equation (24) to get the third decision arc
{c = 1,S = [4,1,0,2,−1,3]} (shown in blue) which is
optimal in terms of minimizing excess. This decision arc
has lower reliability relative to the second decision arc

(shown in green) but lower cumulative excess and therefore
less overdesign. We provide the values of the objective
function and reliability constraints for all three decision arcs
in Table 2.

Table 2: Results obtained for example decision arcs given a
requirement arc Rw

Decision arc Objective
value

Reliability
constraints

Design alternative

{c,S} f (c,S;R) g(c,S;R) {c,D}

3.91



−0.063
−0.9
0.3
−0.7
−0.2
−0.1


{c = 1, {c = 1,

S = [2,1,−1,−1,0,−1]} D = [2,1,0]}

5.16



−0.94
−0.9
−0.70
−0.7
−0.20
−0.1


{c = 1, {c = 1,

S = [4,1,0,2,−1,3]} D = [4,1,0,2,3]}

4.58



−0.063
−0.9
−0.20
−0.7
−0.17
−0.1


{c = 1, {c = 1,

S = [2,1,0,4,−1,3]} D = [2,1,0,4,3]}

Finally, the example in this section shows that the order
of redesign steps can have a significant impact on the relia-
bility and level of overdesign throughout epochs. The second
and third decision arcs contain the same redesign choices but
in different order. Choosing the right order of redesign oper-
ations is important when considering multiple epochs.

5.3 Set-based design and tradespace exploration
We solve an optimization problem similar to the one in

Section 5.2 for every requirement arc in ΩR to obtain the set
of parametric optimal design alternatives when optimizing
for cumulative excess (S∗E ). For each design alternative in
ΩCD, we plot the frequency of observations in S∗E normal-
ized by the cardinality β of set ΩR to obtain the histogram
shown in Figure 7. We evaluated the flexibility and robust-
ness of each design alternative in ΩcD using the method in
Algorithm 2.

We select the top α = 10 design alternatives in Figure 7
as our set of optimal design alternatives SE . In practice, α is
constrained by the designers’ ability to concurrently develop
and analyze the selected set of design alternatives. For ex-
ample, development time and cost may limit the designers
to a maximum of 10 designs that can be concurrently devel-
oped at any given time during development. Furthermore,
the 10th design alternative in SE given by λ = 278 is repre-
sentative of the lower ranking design alternatives since they
all have comparable frequencies. A similar rationale is used
for obtaining the set of robust design alternatives SR. Only
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(a) {c = 1,D = [1,2,4]}

(b) {c = 1,D = [1,2,4,0]}

Fig. 5: Two-dimensional projections of the four-dimensional parameter space

α = 5 design alternatives are used to construct the flexible
set-based solution SF since we focus on those designs with
maximum possible filtered outdegree OF = 4.

The sets SE , SR, and SF are visualized on a tradespace.
This tradespace is described by a utility (given by the volume
of the capability set Vc) and cost (given by the weight W ) and
is shown in Figure 8. The Pareto front for the tradespace is
obtained by solving the problem in Equation (33).

From the tradespace, we can draw several insights. The
flexible set-based solution minimizes cost but also minimizes
utility. In contrast, the robust design set maximizes utility but
also maximizes the cost. The set-based solutions obtained by
optimization balances utility with cost. We quantify the size
of the set-based solutions by their convex hulls. Convex hulls
are used to calculate three metrics: the area spanned by the
set, location of the set given by its centroid and proximity to
the Pareto front given by the distance from the centroid to
the nearest Pareto point [41]. We report these convex hull

metrics in Table 3.
We can see that the set of optimal design alternatives

with respect to cumulative excess SE occupies 10.4% which
is comparable to that occupied by the set of flexible design
alternatives SF and greater than that occupied by the set of
robust design alternatives SR. The set of optimal design al-
ternatives SE is close to the Pareto front, since it aims to bal-
ance robustness with flexibility which are indirectly related
to capability and weight.

We aim to analyze the top 6 designs in set SE in Figure 7
by examining the geometry of the deposits that belong to
these designs in Figure 9.

Figure 9 shows that the top 6 designs in SE share the
same concept c= 1. The top two designs (λ= 82 and λ= 86)
share the first two deposit choices D1 = 1 and D2 = 0. The
runner-up design (λ = 86) adds two additional deposits to
the top ranked design (λ = 82). The addition of two more
deposits to the top ranked design reduced the capability Vc.
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Fig. 6: Visualization of decision arcs
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Fig. 7: Distribution of optimal design alternatives in set-
based solutions

This is because of the overstiffening of the TRS outer casing
by the addition of more stiffeners. Designs λ= 17 and λ= 82
have the same deposits, but are ranked differently due to the
difference in thermomechanical effect of depositing D1 = 0
first instead of D1 = 1.

Fig. 8: Tradespace of set-based design alternatives

The tools developed in this paper can help designers
make informed decisions about the sequence of redesign
choices during a product cycle. These insights are particu-
larly useful for determining the first redesign choice when
uncertainty and the number of possible choices are high.

6 Discussion
The scope of this study focuses on how to decide on en-

gineering change given a set of possible requirement changes
ΩR [11, 42, 13, 43, 44]. Several assumptions were made to
simplify the analysis and obtain comparative numerical re-
sults.

We modeled every possible requirement change, by con-
sidering the parameters governing the requirement PDFs (the
mean and standard deviation) to be random and uniformly
distributed. We solved the optimization problem for every
possible requirement arc to obtain a set of solutions. In prac-
tice, such exhaustive search strategies can be limited by rela-
tively small computational budgets. We attempt to overcome
this difficulty by using optimization and Monte-Carlo sim-
ulation coupled with an early stopping criterion (based on
whether the design rankings in Figure 7 have stabilized) to
explore the set ΩR which represents all the possible require-
ment changes that can happen. The large cardinality of this
set (6×1050) reflects this challenge.

Most engineering organizations have detailed change re-
quest records. Change propagation analysis based on exist-
ing documentation of change requests assists designers in un-
derstanding what requirement changes are likely to occur at
different stages of the product development cycle [43,44] and
within different subsystems of the design [11, 13, 43]. This
information can be leveraged to reduce the set ΩR to a man-
ageable size (say only the 10000 most important changes)
for the design margin analysis presented in this paper. Just
as design margin analysis can benefit from change propaga-
tion analysis, our method can support the choice of rating
scales (i.e., the optimality rankings we present in Figure 7)
in an engineering change propagation analysis such as that
provided by Koh et al. [13].

Our analysis assumed that the uncertain parameters
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Table 3: Set-based solution comparison

Quantity Set of feasible Set of robust Set of flexible Set of optimal
design alternatives ΩcD design alternatives SR design alternatives SF design alternatives SE

W Vc W Vc W Vc W Vc
Lower 4.32 0.059 15.66 0.992 4.32 0.127 11.47 0.736
Upper 26.74 1.00 26.74 1.00 11.28 0.812 24.70 1.00
Set centroid 14.02 0.533 22.34 0.998 6.86 0.492 16.35 0.920
Vhyper-rectangle 1 0.0038 0.226 0.166
Vconvhull 0.758 0.0026 0.092 0.104
%Vfeasible 75.8% 0.26% 9.2% 10.4%
DPareto 0.421 0.298 0.172 0.0904

Design
alternative (λ) 82 86 17 240 167 164

concept (c) 1 1 1 1 1 1

1st deposit
(D1)

2nd deposit
(D2)

3rd deposit
(D3)

4th deposit
(D4)

Fig. 9: Top performing design alternatives in SE

T1,T2,T3, and T4 are uncorrelated (i.e., the off-diagonal terms
of the covariance matrix Σ in Equation (5) are equal to zero)
when formulating a requirement. This assumption was made
due to the lack of operational data needed to estimate the
covariance matrix and to simplify the computation of the re-
liability integral. A second-order DSM approach for manag-
ing requirement changes is particularly useful for identifying
those correlations since it shares the same size and features
with the covariance matrix [11].

The analysis presented in this paper is restricted to the
allocation of design margins on a single component, the
TRS. Engineering change can span complex product systems
with multiple subsystems [11, 13, 43]. The design margins
of several interacting components should be considered si-
multaneously and formulations for such system-level design
margins are provided in the literature [2, 45].

The optimization in Equation (24) uses “cumulative ex-
cess” as the objective function. This has the effect of penaliz-
ing carrying a large amount of excess in epoch 1. If we con-
sider re-design of a product or system that is already in op-
eration, accumulating excess early in the product’s life will
lead to greater weight which translates to an accumulation of

running costs due to the increased fuel consumption associ-
ated with the added weight [46]. Furthermore, minimization
of excess is only possible in the early design stages when
requirements are still fluid. The high reliability threshold to-
wards the end of the design process (see Figure 5a) restricts
the minimization of excess. An additional constraint can be
added to the optimization problem to ensure a certain mini-
mum amount of excess is built into the design throughout the
design process. The safety factor threshold in Equation (34)
can be increased to provide an added layer of safety. The re-
liability thresholds could also be revised at the start of every
epoch based on the current circumstances of the industry or
project (e.g., new industrial standards) to give more accurate
estimates of reliability and excess.

Different objectives such as life-cycle cost, weight, or
stiffness can be used in lieu of excess and the resulting sets
of solutions can all be compared in a tradespace to gain more
insight about possible competing objectives. Alternatively,
different objectives can be aggregated via a weighted sum
based on designer preferences. The set of solutions based on
this aggregate objective function reflects those preferences.

The decision making problem given by Equation (24)
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assumes that repeated change decisions are not possible.
This stems from manufacturing constraints specific to the re-
manufacturing application in this paper. This constraint can
be relaxed for other manufacturing methods such as conven-
tional machining to recall a change. The extended poll used
to define the categorical neighborhood of different decisions
can be changed to allow repetition if necessary. A penalty
could be associated with such a change to discourage the op-
timizer from retracting changes. This is because repetition
of changes (whether by AM or not) is not reversible in most
cases and involves a kind of “friction” when reverting the
change.

This paper does not consider the effect of new or disrup-
tive technological solutions. Such considerations can be in-
corporated as a design alternative that provides an extremely
high capability (as well as buffer and excess by proxy) but at
a high cost due to low maturity (given by technology readi-
ness level) [2]. This definition can be adopted when attempt-
ing to include change options that represent such experimen-
tal design choices in future work.

7 Conclusion
We presented a method for the strategic allocation of de-

sign margins to cope with changing requirements of a system
and its components. Design arcs are obtained by solving an
optimization problem to minimize excess subject to reliabil-
ity constraints that reflect such changing requirements.

The proposed method allows designers to identify sev-
eral candidate design alternatives to develop concurrently
with potential to evolve and satisfy a wide range of require-
ment change scenarios without risking overdesigning the
product. Such insights are particularly useful to designers
in the early stages of product development when little infor-
mation regarding the requirements or their future values is
available. The tools and methods developed in this paper are
publicly available on a code repository (GitHub, https:
//github.com/khbalhandawi/DM_SBD_opt).

Furthermore, our tradespace exploration strategy helps
designers position the candidate design alternatives relative
to other widely used strategies such as design for flexibility
or robustness. This is useful for narrowing down the set of
candidate solutions depending on the preference of designers
for flexibility or robustness. Finally, designers can identify
solutions that may otherwise be overlooked when only con-
sidering Pareto optimal designs from a tradespace obtained
from information at a particular time in the development cy-
cle.

In our methodology, we considered a feasible set that
consists of permutations of discrete design choices. More
alternatives can be discovered by considering a continuous
or mixed variable design space. More advanced importance
sampling methods can be used for determining the volumes
of excess and capability in the multi-dimensional parameter
space. Other more representative tradespace attributes can be
used to denote the utility or cost of a design such as lifecycle
cost.

The novel design margin metrics and corresponding al-

location strategy presented in this work provide designers
with the tools necessary to achieve designs that can endure
the long lifecycles expected in the aerospace industry.
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